Data-Driven Attack Detection for Linear Systems
نویسندگان
چکیده
This letter studies the attack detection problem in a data-driven and model-free setting, for deterministic systems with linear time-invariant dynamics. Differently from existing that leverage knowledge of system dynamics to derive security bounds monitoring schemes, we treat cases where dynamics, as well strategy location, are unknown. We fundamental limitations function only observed data without estimating (in fact, no assumption is made on identifiability system). In particular, (i) informativity length observation window, (ii) provide characterization undetectable attacks, (iii) construct monitor. Surprisingly, our results show while requires larger window attain capability, once attained it shares same model-based monitoring.
منابع مشابه
Big Data Testbed for Network Attack Detection
Establishing an effective defense strategy in IT security is essential on one hand, but very challenging on the other hand. According to the 2014 Cyberthreat Defence Report [1] that involved more than 750 security decision makers and practitioners, more than 60% of organizations had been breached in 2013. Big data analytics in security provides the possibility to gather and analyse massive amou...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولa new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولData-driven Parsing using PLCFRS Data-driven Parsing using Probabilistic Linear Context-Free Rewriting Systems
This paper presents the first efficient implementation of a weighted deductive CYK parser for Probabilistic Linear Context-Free Rewriting Systems (PLCFRS). LCFRS, an extension of CFG, can describe discontinuities in a straightforward way and is therefore a natural candidate to be used for data-driven parsing. To speed up parsing, we use different context-summary estimates of parse items, some o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Control Systems Letters
سال: 2021
ISSN: ['2475-1456']
DOI: https://doi.org/10.1109/lcsys.2020.3005102